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Abstract—This paper investigates the automatic construction of 

hierarchical fuzzy systems.  Given a set of training data, 
homogeneous structures (or clusters) are searched for within the 
data using fuzzy c-means clustering.  The clusters found are used to 
construct sub-rule bases in the lower hierarchical levels of the entire 
rule-base.  For each cluster found, the proposed binary interclass-
separability criterion is used to determine the suitable subspace that 
forms a separation surface.  The meta-rules are formed using the 
subspaces identified.  The proposed technique is validated using 
both artificially generated as well as real world data. 

I. INTRODUCTION 
HIS paper investigates the automatic construction of 
hierarchical fuzzy systems [1].  The hierarchical fuzzy 
system is based on the following idea.  Often, the multi-

dimensional input space X = X1 x X2 x  … x Xk can be 
decomposed into some subspaces, e.g. Z0 = X1 x X2 x  … x 
Xk0 (k0 < k), so that in Z0 a partition Π = {D1, D2, D3 } can be 
determined.  In each Di, a sub-rule base Ri can be constructed 
with local validity.  The hierarchical rule base structure 
becomes: 
R0: if Z0 is D1 then use R1 
      if Z0 is D2 then use R2 

M  

      if Z0 is Dn then use Rn 
 
R1: if Z1 is A11 then y is B11 
      if Z1 is A12 then y is B12 

M  

      if Z1 is A1m1 then y is B1m1 
 

 
… … 

 
Rn: if Zn is An1 then y is Bn1 
      if Zn is An2 then y is Bn1 

M  

      if Zn is Anmn then y is Bnmn 

The fuzzy rules in rule base R0 are termed meta-rules since 
the consequences of the rules are pointers to other sub-rule 
 
 

bases instead of fuzzy sets.  We denote Zi as the subspace 
used in the rule base Ri.  Di is the ith fuzzy set used in the 
meta-rule base R0 and Aij is the jth fuzzy set used by the rule 
base Ri.  In the sample model above, only one meta-rule base 
(R0) is used.  In this paper, it is sufficient to restrict our 
discussion to the sample model but we remark that more than 
one meta-rule base can be present in practice.  This will be 
illustrated in our experiment later in section VI. 
 
The two main advantages of the hierarchical structure are 
interpretability and reduced complexity.  Hierarchical 
structured rules have fewer terms in the antecedents leading 
to higher interpretability compared to traditional fuzzy rules 
which use all input dimensions in the antecedents.  The 
complexity of fuzzy systems can be reduced when suitable Z0 
and Π are found such that in each sub-rule base Ri the input 
space Xi is a subspace of X / Z0 = Xk0+1 x Xk0+2 x … x Xk [1]. 
 
The inference mechanism of the hierarchical fuzzy system 
has been established in [1].  Here, we consider the automatic 
construction of such hierarchical rule bases from a set of 
training data.  The difficulty in construction is mainly in 
finding the subspace Z0 and a suitable Π.   
 
The main requirement of a reasonable Π is that each of its 
elements Di can be modeled by a rule base with local 
validity.  In this case, it is reasonable to expect Di to contain 
homogeneous data.  The problem of finding Π can thus be 
reduced to finding homogeneous structures within the data.  
This can be achieved by clustering algorithms.  Section II of 
this paper describes how fuzzy c-means clustering can be 
used for this purpose. 
 
The subspace Z0 is used by meta-rules to select the most 
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appropriate sub-rule base to infer the output for a given 
observation (i.e. system input).  In section III of this paper, 
we formulate a criterion for determining Z0 based on the 
concept of interclass separability.  A preliminary hierarchical 
fuzzy modeling scheme is proposed in section IV.  Section V 
describes the parameter tuning process.  The experiments and 
conclusion are presented in sections VI and VII respectively. 

II. PARTITION FINDING WITH FUZZY CLUSTERING 

One of the main tasks in hierarchical modeling is finding a 
partition Π = {D1, D2, D3 } from the training data such that 
for each Di, a sub-rule base Ri can be constructed with local 
validity.  For Ri with local validity, we expect Di to contain 
homogeneous data, to be found by a clustering algorithm.  
Among the widely used clustering algorithms, Fuzzy c-
Means clustering (FCMC) [2] remains predominant in the 
fuzzy research literature.   

 
Given c clusters, FCMC partitions the data X = {x1,x2,…,xn} 
into c fuzzy classes by minimizing the within group sum of 
squared error objective function as follows (Eqn 1). 
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Eqn 1

where Jm(U,V) is the sum of squared error for the set of 
fuzzy clusters represented by the membership matrix U, and 
the associated set of cluster centers V.  ||.|| is some inner 
product-induced norm.  In the formula, ||xk – vi||2 represents 
the distance between the data xk and the cluster center vi.  The 
number m governs the influence of membership grades in the 
performance index.  The necessary conditions for (Eqn 1) to 
reach its minimum are: 
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In each iteration of the FCMC algorithm, matrix U is 
computed using (Eqn 2) and the associated cluster centers are 
computed as (Eqn 3).  This is followed by computing the 
square error in (Eqn 1).  The algorithm stops when either the 
error is below a certain tolerance value or its improvement 
over the previous iteration is below a certain threshold. 
 
The optimal number of clusters are determined by means of a 
criterion, known as the cluster validity index. Fukuyama and 
Sugeno (FS) proposed the following cluster validitiy index 
[3]: 
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where n is the number of data points to be clustered; c is the 
number of clusters; xk is the kth data, x is the average of 
data; vi is the ith

 cluster center; Uik is the membership degree 
of the kth data with respect to the ith cluster and m is the fuzzy 
exponent.  The number of clusters, c, is determined so that 
S(c) reaches a local minimum as c increases.  The terms || xk - 
vi || and || vi- x || represent the variance in each cluster and 
variance between clusters respectively.   
 
The performance of the validity index can be improved when 
used in conjunction with a merging index [4]. The hybrid 
approach proposed in [4] for finding the optimal number of 
clusters has two steps.  In the first step, the FS index is used 
to find a rough estimation of the optimal number of clusters.  
The number is later refined in the second step by merging 
pairs of clusters based on the following index: 
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where xj is the jth data and v is a cluster center. For each pair 
of cluster centers vi and vj, the index (Eqn 5) is calculated for 
vi, vj, and vm where vm is the middle point (vi + vj)/2. If p(vm) 
is smaller than both p(vi) and p(vj), then the centers stay un-
merged.  Otherwise, they are merged.   

III. FINDING SUBSPACE FOR META-RULES CONSTRUCTION 
In this section, the problem of subspace determination for 
meta-rules construction is discussed.  In a hierarchical fuzzy 
system, the subspace Z0 is used by meta-rules to select the 
most appropriate sub-rule base to infer the output for a given 
observation.  Given the partition Π = {D1, D2, … Dn }, a 
subspace Z0 can be determined by considering its ability to 
separate the components Di in the partition.  The intuition is 
that the more separable the components, the easier the sub-
rule base selection becomes.   In this paper, we adapt the 
interclass separability index for finding the subspace Z0.  A 
review of the original interclass separability index often used 
for feature selection is presented in subsection A, and 
extended for hierarchical fuzzy modeling in subsection B. 

A. Interclass Separability 
The concept of interclass separability was successfully used 
in feature selection [5].  By feature selection, we refer to the 
process of identifying input variables that has significant 
influence to the output.  Here and elsewhere in the paper, the 
term feature and input variable are used interchangeably.  
Consider a set of N input-output pairs F = {X; y}, X = {xi | i 
∈ I} where I is the index set, xi and y are column vectors.  By 
deleting some features, we obtain a subspace X’ = {xi | i ⊂ I}.  
Suppose that the input X should be categorized into classes 
Ci (i = 1, …, Nc) which possess a priori class probability pi 
and the cardinality of the classes is |Ci| = ni, then the criterion 
function for feature ranking based on the interclass 
separability is formulated by means of the following 
between-class (Eqn 6) and within-class (Eqn 8) scatter 
(covariance) matrices. 
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Here, T denotes the matrix transpose.  The criterion is a trade 
off between Qb (Eqn 6) and Qw (Eqn 8), often expressed as: 
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where ‘tr’ denotes the trace of a matrix.  In [6] the interclass 
separability criterion was adapted for fuzzy modeling by 
generalizing Qb and Qi to (Eqn 13) and (Eqn 14). 
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In [6], the set of classes C is determined by clustering the 
output space using fuzzy clustering algorithms such as fuzzy 
c-means [2].  The resulting cluster-membership degrees (µij) 
are then used as weights (Eqn 13 - Eqn 15). 
 
Sequential backward selection (SBS) is used to rank the 
features as follows.   
 

1. Let F = {1, …, N} be the complete set of features. 
2. For all f ∈ F 

a. Let F = F – {f} and also update matrix X, vectors 
vi and v by deleting temporarily its fth row or 
element. 

b. Calculate matrices Qb(X), Qw(X) and determine 
J(X’). 

3. Let f’ = argminf∈F J(X|f), that is where J attains its 
minimal value.  Delete permanently the variable(s) 
f’ from F the corresponding columns from X, vi and 
v.  Note that f’ can contain more than one variable. 

4. If {F} > 1 then go to step 2, otherwise stop. 
 

The order of the deleted variables gives their rank of 

importance.  Based on the ranking produced, the optimal 
number of features can be determined on a trial and error 
basis.  Specifically, we start to build up fuzzy systems with a 
small number of top ranked features (one or two).  The 
system is evaluated by a performance index.  The process is 
repeated with a slightly increased number of features (e.g. 
three) until either an acceptable performance is achieved or a 
local optimum is reached. 
 
With some modification, the technique can assist the 
determination of Z0 in hierarchical fuzzy modeling.  In the 
next section, the modification is presented. 

B. Binary Interclass Separability 
Consider the set of homogeneous structures (or classes) Ci (i 
= 1, …, Nc) identified from a set of data for which each Ci 
can be modeled by a sub-rule base Ri with local validity.  
Given an observation, we need to select the most suitable 
rule base to infer the output.  This job is performed by meta-
rules whose output is the chosen sub-rule base (see section 
I). 
 
One criterion for finding the suitable subspaces Zi to form the 
meta-rules is based on the separability of the classes Ci.  That 
is, for each Ci, the validity of the corresponding Zi can be 
determined by computing its ability to separate Ci from the 
rest of the classes Cj ∀j≠i.  Let vi be the class mean of Ci, i.e. 
the mean of data points in Ci, the validity criterion can be 
formulated by considering the separation between vi and vr 

where: 
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This way, we deal with the separation of only two classes at 
a time, thus the name binary interclass separability. 
 
Consequently, (Eqn 8) and (Eqn 13) can be simplified to 
(Eqn 18) and (Eqn 19) respectively. 

riw QQQ +=  Eqn 18 
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where 
ijrj µµ −= 1  Eqn 20 
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The validity of the subspace Zi can be calculated by (Eqn 
12).  Using the binary interclass separability criterion, the 
subspace Zi can be determined for each class Ci using an 
algorithm analogous to the techniques discussed in section 
III(A).  When Zi is found, a fuzzy set Di can be constructed 
by examining the data points from the subspace Zi.  
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Subsequently, a meta-rule can be formed as:   
If Zi is Di then use Ri 

IV. HIERARCHICAL FUZZY MODELING 
In this section, we propose an algorithm for hierarchical 
fuzzy modeling.  The algorithm consists of 5 steps. 
 
1. Find homogeneous structures within the data.  Perform 

Fuzzy c-means clustering [2] on the data.  The optimal 
number of clusters within the set of data is determined 
by means of a cluster validity index (see section II). 

2. A crisp partition of the data points are constructed based 
on the set of clusters (each with homogeneous structure), 
namely, for each Ci, a crisp cluster of points are 
determined Pi = {p |  µi(p) > t } where t is a small 
threshold. 

3. For each cluster Ci, rank the features according to the 
binary interclass separability criterion proposed in 
section III(B).  Select n top-ranked variables to form the 
subspace Zi in which the following meta-rule is 
constructed. 

If Zi is Di then use Ri 
The fuzzy set Di can be constructed by examining the 
crisp partition Pi.  At this stage, the number n is left as a 
user-input parameter.  Further research is necessary to 
automate the selection. 

4. Construct the sub-rule bases.  For each crisp partition Pi, 
apply a feature extraction algorithm (see section III(A)) 
to eliminate unimportant features.  The remaining 
features (know as true inputs) are then used by a fuzzy 
rule extraction algorithm to create the fuzzy rule base Ri.  
Here, we suggest the use of the projection-based fuzzy 
modeling approach [7].  We remark however, that the 
hierarchical fuzzy modeling scheme does not place any 
restriction on the technique used.  If more hierarchical 
levels are desired, repeat steps 1 – 5 with the data points 
in Pi. 

5. Parameter Identification.  The completed hierarchical 
fuzzy rule-base then goes through a parameter 
identification process where the parameters of the 
membership function used in the fuzzy rules are adjusted 
to improve the overall performance.  Section V describes 
the process in more detail. 

V. PARAMETER IDENTIFICATION 
Parameter identification is a process to tune the parameters 
of membership functions in the rule antecedents.  The 
technique described in [8] is designed for trapezoidal fuzzy 
sets.  The algorithm is as follows: 
 

1. Set the value f  for adjustment. 
2. Let pk

j be the kth parameter of the jth fuzzy sets. 
3. Calculate pk+

j = pk
j + f and pk-

j = pk
j – f.   

If k = 2, 3, 4, and pk
j + f > pk+1

j, then pk+
j = pk-1 

If k = 1, 2, 3, and pk
j – f < pk-1

j, then pk-
j = pk+1 

4. Choose the parameter with the best performance 
among {pk+

j, pk
j, pk-

j} and replace pk
j by it. 

5. Go to step 2 while unadjusted parameters exist. 
6. Repeat step 2 until satisfied with performance. 

 
In [8], f = 5% of the width of the universe of discourse is 
used.  Fig. 1 shows the parameter adjustment process. 
 

 

f f

Pk+
j Pk-

j 

 
Fig. 1.  Parameter Adjustment. 

VI. EXPERIMENTS 
In this section, we present the experiments done to validate 
the potential of the proposed hierarchical modeling scheme 
and the binary interclass separability criterion.  Both 
artificially generated and real world data are used in the 
experiments.  The next sub sections described the 
experiments. 

A. Experiments with Artificial by Generated Data 
A simple hybrid system is designed to generate data with a 
hierarchical nature and the binary interclass separability 
criterion is applied in conjunction with the hierarchical rule 
base generation scheme to the data. 
 
The structure of the hybrid system consists of three sub-
models controlled by three crisp rules illustrated as follows. 
 

If X1 is [0.1 0.9] then use M1 
If X3 is [0.1 0.9] then use M2 
If X5 is [0.1 0.9] and X6 is [0.1 0.9] then use M3 
 
M1: y = f1( X2, X4 ) =  (X2)2 + (X4)1.5 

 

M2: y = f2( X7 ) = sin( X7 )  
M3: y = f3( X8 ) = cos( X8 )  

 
The hybrid system has 8 input variables, namely, X1, …, X8.  
X1, X3, X5 and X6 are used by the meta-rule base to select one 
of the sub-models to infer the output given an observation.  
Different sub-models Mi use different subsets of inputs to 
infer the output (e.g. M1 uses X2 and X4).  Altogether 300 
data points are input to the hybrid system to generate the 
corresponding output.  To keep the experiment simple, the 
first 100 data points trigger only rule number 1, the 
subsequent 100 data points trigger only rule number 2 and 
the last 100 data points trigger only rule number 3.  Random 
normal values are inserted in dimensions X2, X4, X6, X7.   

 
Following the scheme in section IV, we perform fuzzy c-
means clustering in conjunction with a cluster validity index 
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on the data in the multi-dimensional input space.  Three 
clusters were found.  The cluster centers are shown in Fig. 2. 
 

[1.52, 1.48, 1.46, 2.48, 0.50, 0.50, 3.49, 4.52] 
[0.52, 1.51, 1.46, 2.51, 1.50, 1.50, 3.50, 4.51] 
[1.49, 1.46, 0.52, 2.47, 1.52, 1.52, 3.47, 4.49] 

Fig. 2. Cluster Centers 

The ranking from section III(B) is shown in Table 1.  The 
dominating variables in the table are based on our prior 
knowledge of the original model.  It can be observed from 
the results that the criterion produces correct rankings in the 
sense that the relevant features in the crisp rules are ranked 
highest in all three clusters.   

Table 1 
EXPERIMENTAL RESULTS 

Cluster  Dominating Variable Feature Ranking 

C1 X5, X6 5  6  1  3  2  4  7  8 
C2 X1 1  5  6  3  2  4  7  8 

C3 X3 3  5  6  1  2  4  7  8 
 

In the following, the experiment is repeated to simulate a less 
than ideal situation where the number of clusters found does 
not match the desired number.  Experiment II and III were 
performed by fuzzy clustering the data into 5 and 12 clusters 
respectively.  The clusters’ dominating variables as well as 
the ranking are shown in Table 2 and Table 3.  The criterion 
correctly gives top ranking to the dominating variables. 

Table 2 
EXPERIMENTAL RESULTS II 

Cluster  Dominating Variables Feature Ranking 

C1 X5, X6 5  6  1  3  8  4  2  7 
C2 X3 3  5  6  1  2  8  4  7 
C3 X5, X6 5  6  1  3  8  4  2  7 
C4 X1 1  5  6  3  2  4  7  8 
C5 X1 1  5  6  3  2  4  7  8 

Table 3 

Experimental Results III 

Cluster  Dominating Variables Feature Ranking 

C1 X1 1  3  5  6  2  4  7  8 
C2 X3 3  1  5  6  2  4  8  7 
C3 X1 1  3  5  6  2  4  7  8 
C4 X3 3  1  5  6  2  4  8  7 
C5 X5, X6 5  6  1  3  8  4  2  7 
C6 X5, X6 5  6  1  3  8  4  2  7 
C7 X3 3  1  5  6  2  4  8  7 
C8 X1 1  3  5  6  2  4  7  8 
C9 X1 1  3  5  6  2  4  7  8 
C10 X1 1  3  5  6  2  4  7  8 
C11 X5, X6 5  6  1  3  2  4  7  8 
C12 X3 3  1  5  6  2  4  7  8 

 
Next, we apply the hierarchical modeling scheme to the data.  

The meta-rules generated for the three clusters in Fig. 2 are 
shown as follows where the vector denotes the four 
characteristic points of a trapezoid. 
   

1. If X5 is [ 0.14  0.29  0.75  0.84 ] and 
  X6 is [ 0.14  0.29  0.75  0.84 ] then use R1 

2. If X3 is [ 0.10  0.38  0.60  0.90 ] then use R2 
3. If X1 is [ 0.10  0.34  0.65  0.90 ] then use R3 

 
It can be seen from the results that the meta-rule base 
generated is substantially similar to the original meta-rules 
used in the artificially generated hybrid model.   
 
Next, the data points in each crisp cluster Pi created at step 2 
are used to create a sub-rule base Ri.  In step 4, it is suggested 
that a feature selection algorithm is applied on the data 
before the rule extraction process.  In this experiment, we 
adopt the feature selection technique described in section 
III(A).  Table 4 shows the feature ranking results for the data 
points in each crisp cluster.  The results matches our 
expectation based on the hybrid model.  Subsequently, a sub-
rule base can be constructed using the true inputs identified 
to model each of the sub-models designed in the experiment.  
The construction of the sub-rule base can be performed by 
using any fuzzy rule-extraction algorithm in the literature [9]. 

Table 4 

Feature Ranking 

Cluster  Dominating Variables Feature Ranking 

P1 X8 8  7  3  5  6  2  1  4 
P2 X7 7  4  5  6  2  1  3  8 
P3 X2, X4 2  4  1  5  6  7  8  3 

B. Experiment With Real-World Data 
The data used is a set of benchmark data in reservoir 
characterization, obtained from a real reservoir. The 
objective is to develop an estimator to predict porosity (PHI) 
from well logs. 

 
The well logs available are: Depth, GR (Gamma Ray), 
RDEV (Deep Resistivity), RMEV (Shallow Resistivity), 
RXO (Flushed Zone Resistivity), RHOB (Bulk Density), 
NPHI (Neutron Porosity), PEF (Photoelectric Factor) and DT 
(Sonic Travel Time). Normalised data [0, 1] is used. 

 
There are altogether 633 rows of data.  Since accuracy and 
the generalization ability are not the main concern of this 
study, the same set of data is used for training as well as 
testing.  The goal of the experiment is to verify the 
practicality of the hierarchical model by constructing a 
hierarchical fuzzy system with reasonable accuracy and good 
interpretability out of real world data.  To ensure that the 
model has reasonable accuracy, the mean square error has 
been used as a performance index: 
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Where m is the number of data, yi
  is the ith actual output and 

iŷ is the ith model output. 
 
In step one, 2 clusters were found within the data using 
FCMC in conjunction with the validity index.  After the 
creation of a crisp partition in step two, the binary interclass 
separability index is applied to the data.  The ranking shows 
that the input variable ‘Depth’ is most able to separate the 
two clusters.  This coincides with our understanding of the 
petroleum data.  In general, the rocks at different depths 
exhibit different behavior.  For example, porous rocks can 
collect hydrocarbon but must be capped by non-porous nodes 
to retain them through time. 
 
Using the variable ‘Depth’, the fuzzy meta-rules in Fig. 3 are 
produced.  For each crisp class of points, unimportant 
features are eliminated through the use of the interclass 
separability index (section III(A)) and a sub-rule base is 
constructed with the remaining features.  The two sub-rule 
bases generated are shown in Fig. 4 and Fig. 5.  After 4 
iterations of parameter tuning, the performance index is 
0.023, which is satisfactory. 
 
 
I f  D e p t h  i s  

I f  D e p t h  i s  

T h e n  u s e  R 1

T h e n  u s e  R 2

 
Fig. 3.  Fuzzy Meta-rule Base for Petroleum Data. 

 

 Then phi is 

Then phi is 

Then phi is 
Then phi is 

Then phi is 

Then phi is 

If GR is 
If GR is 

If GR is 

If GR is 

If GR is 

If GR is 
0 1 0 1

Fig. 4. Sub-rule Base R1 

VII. CONCLUSION 
The automated construction of hierarchical fuzzy systems 
has been investigated.  An algorithm for hierarchical fuzzy 
rule extraction has been proposed.  Firstly, homogeneous 
structures (or clusters) are searched for within the training 
data using fuzzy clustering algorithms.  The clusters found 
are used to construct sub-rule bases in the lower hierarchical 
level of the entire rule-base.  For each cluster found, the 
proposed binary interclass-separability criterion is used to 

determine the suitable subspace that forms a separation 
surface.  The subspaces found are then used to formulate 
meta-rules.   
 
The proposed algorithm is validated using both artificially 
generated and real world data.  In subsequent work, some 
implementation improvements will be investigated. 
 
 If RXO is

If RXO is

If RXO is

If RXO is

If RXO is

and GR is

and GR is

and GR is

and GR is

and GR is

Then phi is

Then phi is

Then phi is

Then phi is

Then phi is

1 0 0 10 1 
Fig. 5.  Sub-rule Base R2. 
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